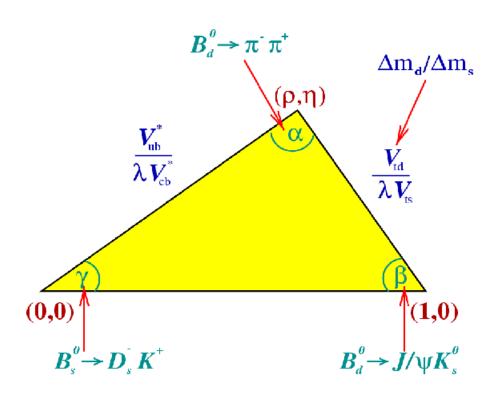
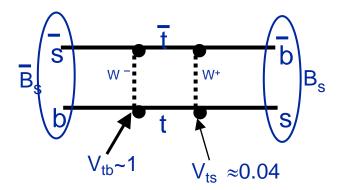
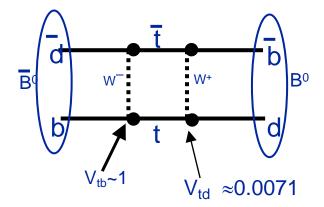
B Tagging and Mixing at Tevatron

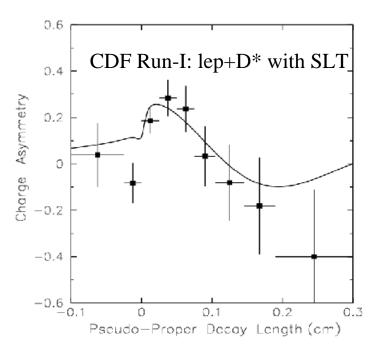

(Focusing on Bs mixing prospect)

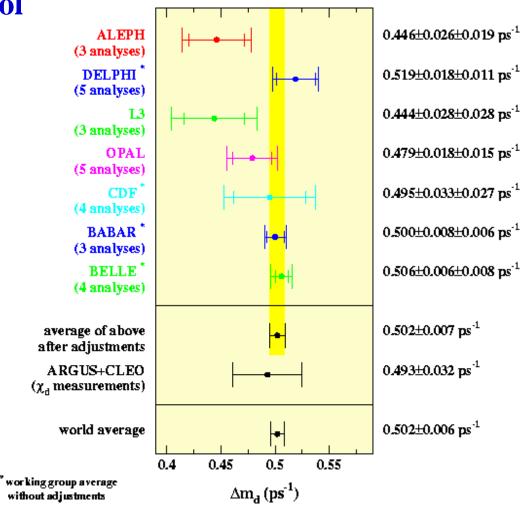

Ting Miao (FNAL)


- •Key issues for B mixing analyses
- Current flavor tagging and Bs yield results
- Prospect in the next few years

B mixing and CKM matrixes

- $\Delta \mathbf{m_s}/\Delta \mathbf{m_d} = (\mathbf{M_{Bs}}/\mathbf{M_{B0}}) \xi |\mathbf{V_{ts}}/\mathbf{V_{td}}|^2$
- Exploring one side of CKM triangle

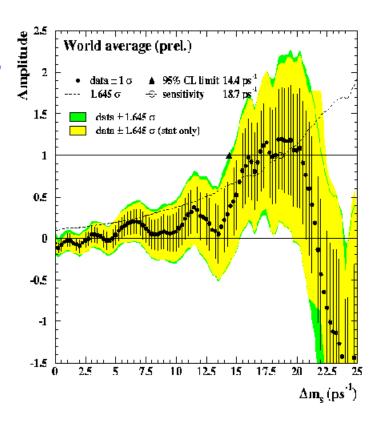



B⁰ mixing

Δm_d is well measured and serves CDF/D0 as nice calibration tool

 $\Delta m_d = 0.512 \pm 0.09 \pm 0.04 \text{ ps}^{-1}$

$\Delta m_d = 0.502 \pm 0.006 \text{ps}^{-1}$ (HFAG 2003)


Bs mixing

- B_s mixing is the top priority for B physics at Tevatron
- A challenging measurement due to the rapid oscillation

 Δ ms>14.4 ps⁻¹@ 90% CL (HFAG 03)

4 oscillations per lifetime cycle

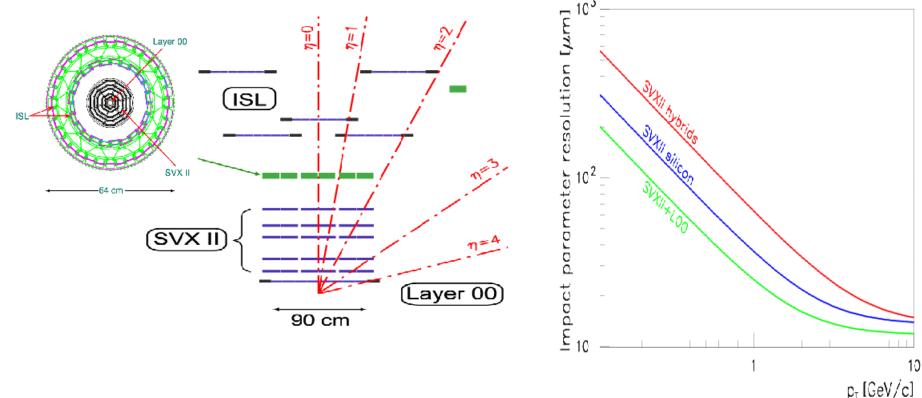
Unique Tevatron opportunity

Combined limits of indirect measurements using amplitude methods from LEP, SLD & CDF Run I

Key issues for Bs mixing

High statistics with good signal-to-background ratio

- Efficient triggering and fine mass resolution
- Trigger on high pT leptons and displaced tracks (SVT/STT)


Efficient Initial B flavor identification

- Only 20-40% chance for both B in the detector acceptance
- e/μ coverage (SLT), tracking (JetQ/SST) and PID (Kaon)

Excellent proper decay length

- Momentum and vertex resolution
- Utilize the fully reconstructed decays

CDF Silicon Detector

- •8 layers with improved 3D ability
- •L00 improves impact parameter resolution by 30-50%
- •ISL extends tracking coverage for e/ μ systems to $|\eta|=2$

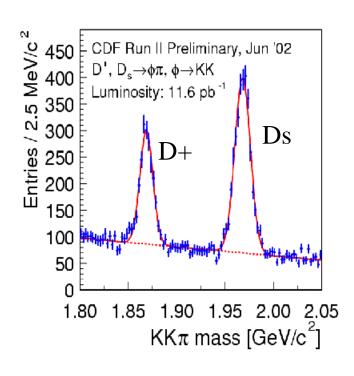
CDF Silicon Vertex Trigger at Level-2

Trigger on displaced tracks from b

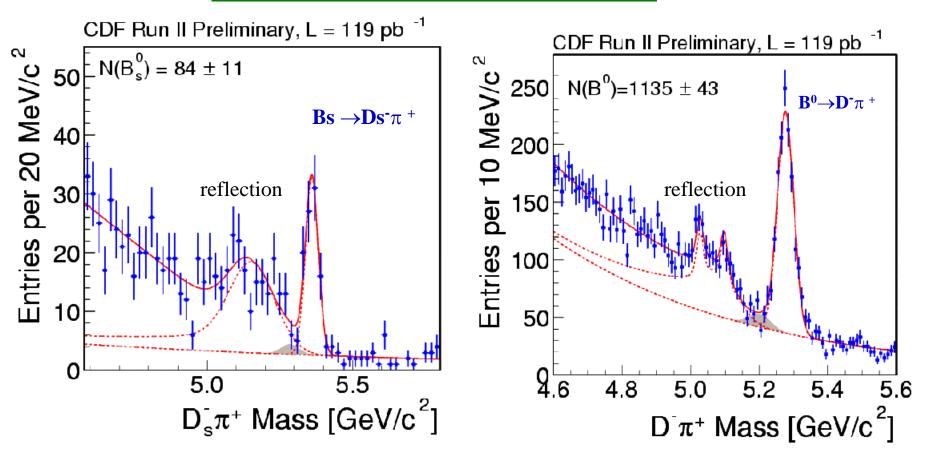
 $L1 \operatorname{track} + \operatorname{Si} \operatorname{hits} = L2 \operatorname{SVT}$

•Excellent L2 impact parameter resolution

σ= 35μm ⊕ 33 μm (resol⊕ beam) = 48 μm


•2-track trigger for Bs \rightarrow Ds π etc.

Tracks: $p_T > 2$ GeV, $d_0 > 120$ µm


•e/µ + displaced track trigger

pT (e/ μ)>4 GeV with pT (track)>2 GeV, d₀>120 μ m

First Run II paper!

Bs \rightarrow Ds π reconstruction

700 event per fb⁻¹ of $Bs \rightarrow Ds \pi$ with $Ds \rightarrow \phi \pi$, $\phi \rightarrow K^+K^-$

 $Br(Bs \to Ds^-\pi^+)/Br(B^0 \to D^-\pi^+)=1.4\pm0.2(stat)\pm0.2(syst)\pm0.4~(Br)\pm0.2(PR)$

Bs \rightarrow Ds π yield (CDF)

Results so far are using early CDF data

Detector coverage and SVT efficiency improved since

SVX-II coverage (now ~90%)

SVT hits requirement optimization $(4/4 \rightarrow 4/5)$

Better use of L2 trigger bandwidth (dynamic pre-scales)

We are seeing a factor of 2 increase on Bs yield

Current condition produces Bs at a rate 1600/fb⁻¹

Not count additional Bs/Ds channels yet

Bs
$$\rightarrow$$
Ds- π + π - π + / Ds \rightarrow K*K, KsK

Proper time resolution (CDF)

- $\sigma_t = (\sigma_{Lxy}/\beta\gamma) \oplus (\sigma_{pT}/pT) \cdot t$
 - Proper time t= Lxy / $\beta \gamma$, $\beta \gamma = m / pT$
- σ_{Lxy} dominates for fully reconstructed events
- $\sigma_{pT}/pT=15\%$ for semileptonic decay
- From Bs \to Ds π sample $\sigma_{Lxy}\approx$ 50 μ m with run-averaged beam line and without using L00 hits
 - σ_{lxy} ≈ 40 ⊕ 30µm (SVX ⊕ beam)
- $\sigma_t = 0.067 ps$ now for $Bs \rightarrow Ds \pi$
- $\sigma_t = 0.050$ ps achievable (L00+event-by-event beam line)

Initial B flavor tagging at CDF/D0

Soft lepton tagging (SLT)

- Semileptonic decay from the 2nd B
- High purity and lepton can be part of a trigger

Jet Charge Tagging (JetQ)

- Correlation of b-flavor and charge of a b-jet
- High efficiency but Low purity

Opposite-side Kaon Tagging (OKT)

- N(B⁰/B+→K⁺)/N(B⁰/B+→K⁻)≈5 due to the b→c→s
- Need PID for tagging purity

Flavor tagging at CDF/D0

Same Side Tagging (SST)

 $(\pi^- B+, \pi^+ B^0, K^+ Bs)$ correlations from b fragmentation or from B^{**} decays

- No need for 2nd B in the acceptance
- High efficiency and reasonable purity
- PID will enhance purity

• εD^2 = effective tagging efficiency

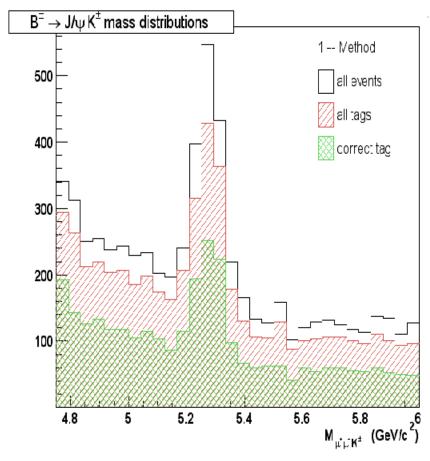
- $\varepsilon = N_{tag}/N_{total}$ (efficiency of finding a tagger)
- D = $(N_R-N_W)/N_{tag}$ (ability for a right decision)

Flavor tagging results from D0

• Tested on $B^+ \rightarrow J/\Psi K^+$ events

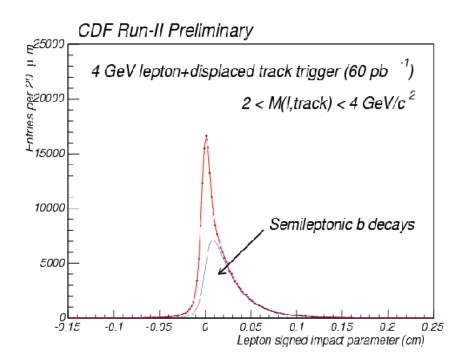
SST:
$$\varepsilon D^2 = (5.5 \pm 2.0)\%$$

 $(\varepsilon = 79.2 \pm 2.1\% \text{ and } D = 26.4 \pm 4.8\%)$

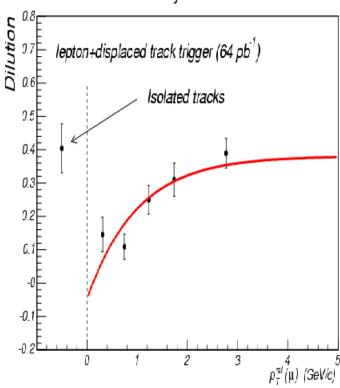

Muon:
$$\varepsilon D^2 = (1.6 \pm 1.1)\%$$

 $(\epsilon = 5.0 \pm 0.5\% \text{ and } D = 57.0 \pm 19.3\%)$

Jet-Q: $\varepsilon D^2 = (3.3 \pm 1.7)\%$


 $(\epsilon = 46.7 \pm 2.7\% \text{ and } D = 26.7 \pm 6.8\%)$

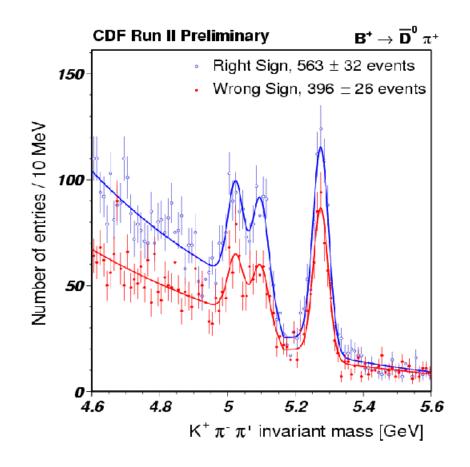
D0 preliminary

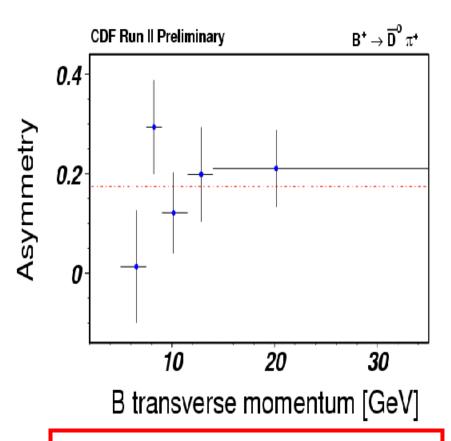

SLT result from CDF

•Test on high statistics *l*+SVT events

• Need to correct the Dilution (64%) from triggered lep+SVT pair due to mixing and charm/prompt background

CDF Run-II Preliminary

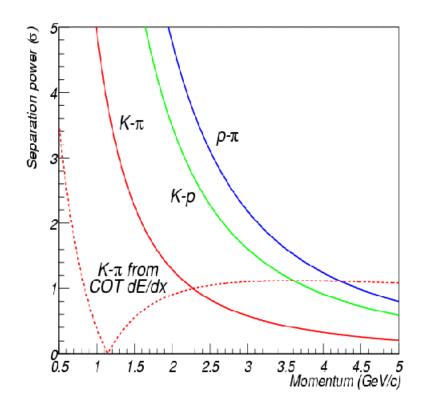


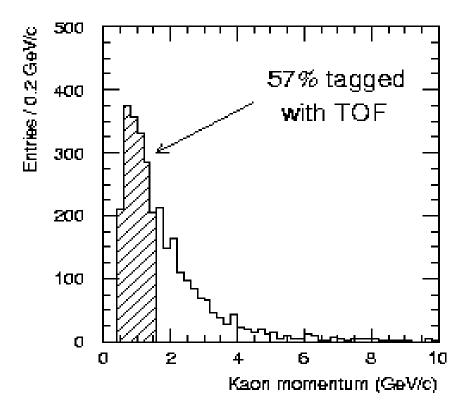

Tagging efficiency:

$$\varepsilon \mathbf{D}^2(\mathbf{mu}) = (0.7 \pm 0.1)\%$$
 ($\varepsilon = 1\%$)

SST result from CDF

SST on B+ \rightarrow J/ Ψ K+ and B+ \rightarrow D⁰K+




$$\varepsilon D^2 = (2.1 \pm 0.7)\%$$
 (\varepsilon = \sigma 62\%)

TOF and flavor tagging

TOF has big effect on tagging purity

- 2σ K-π separation for p<1.6 GeV/c which covers ~57% of the B tracks
- Important for both OKT and SST-K ($\varepsilon D^2 2 \rightarrow 4.2\%$ for SST)

Tagger Summary (CDF)

ε D ² (%)	Run-I	Run-II	Projection w/o TOF	Projection with TOF	Key improvement
SST-π/K	1.5±0.4	2.1±0.7	2.0	2.0 - 4.2	SVX/TOF
SLT-μ	0.6±0.1	0.7±0.1	1.0	1.0	CMX/IMU/ISL
SLT-e	0.3±0.1		0.7	0.7	Plug Cal/ISL
JetQ	1.0±0.3		3.0	3.0	COT/SVX
OKT				2.4	TOF

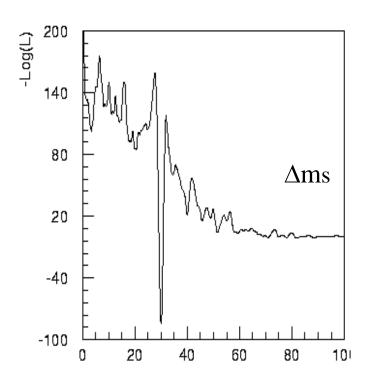
- Measurements with early data are consistent with projections
- Update soon with improved detector coverage and performance
- Projection for CDF Bs mixing sensitivity will use:

$$\varepsilon D^2 = 4\%$$
 (w/o TOF) $\rightarrow 5\%$ (with TOF)

Bs mixing sensitivity formula

$$Significance = \sqrt{\frac{S \varepsilon D^2}{2}} e^{-\frac{(\Delta m_s \sigma_t)^2}{2}} \sqrt{\frac{S}{S + B}}$$

S = number of signal events


S/B = signal/background ratio

 σ_t = proper time resolution

 εD^2 = effective tagging efficiency

• It is the "averaged" significance of analyses using likelihood fittings

$$significan ce = \sqrt{2\Delta \log L} \implies$$

CDF Bs mixing prospect with 500pb⁻¹

With current performance

```
S=1600 event/fb<sup>-1</sup>

S/B=2/1

- \epsilon D^2 = 4\% (SLT+SST+JetQ)

- \sigma_t = 0.067ps
```

- 2σ measurement if Δ ms=15ps⁻¹ from 500pb⁻¹ data
 - Expect 590pb⁻¹ 680pb⁻¹ from Tevatron by 2004
 - Beat current limit from indirect measurements
 - Reach Standard Model favored region

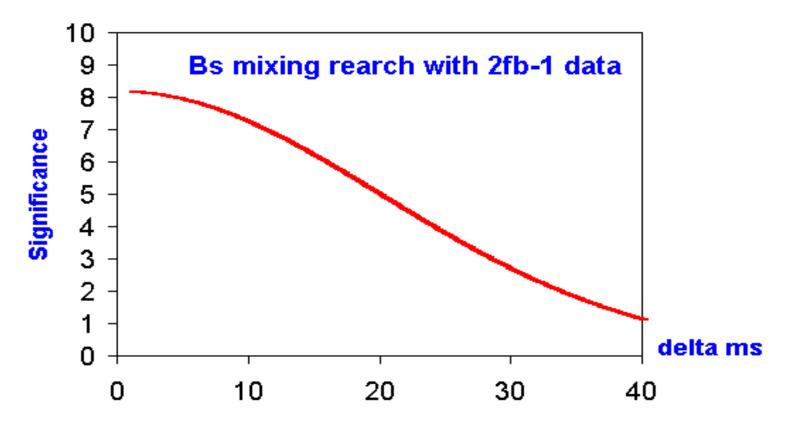
CDF Bs mixing prospect with 2fb⁻¹

- Expect Tevatron to deliver luminosity of
 - 2.11fb⁻¹ (based line) and 3.78fb⁻¹(design) by 2007

With modest improvement for CDF

Add Ds \rightarrow K*K, KsK and Bs \rightarrow Ds- π + π - π +

 $S=1600 \rightarrow 2000 \text{ event/fb}^{-1}$

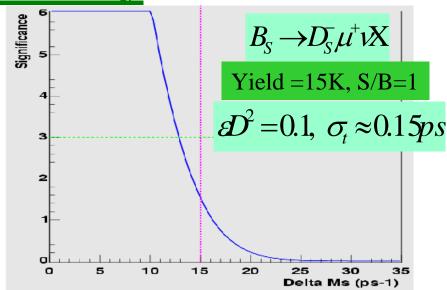

With improved TOF to enhance both SST and OKT

$$\varepsilon D^2 = 4\% \rightarrow 5\%$$

With L00 silicon and event-by-event beamline

$$\sigma_{\rm ct} = 0.067 \rightarrow 0.05 \,\mathrm{ps}$$

CDF Bs mixing prospect by 2007



Go beyond standard model preferred range

5σ measurement if Δ ms=18ps⁻¹ with 1.7fb-1 data 5σ measurement if Δ ms=24ps⁻¹ with 3.2fb-1 data

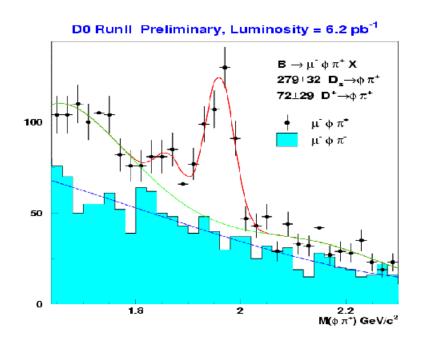
D0 Bs mixing sensitivity

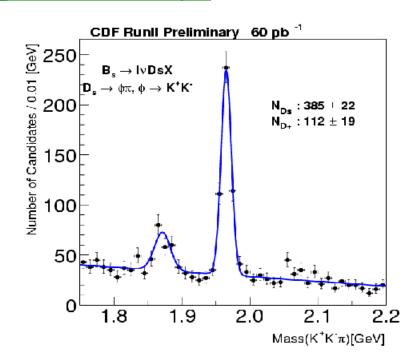
- Detail in Vivek Jain's talk on Tuesday
- Projections with 500 pb⁻¹ data of inclusive muon trigger
 - Triggered muon used to reconstruct
 15K Bs→Ds μ ν
 - Triggered muon used as flavor tagger for 700 Bs \rightarrow Ds π

$\Delta\Gamma_s/\Gamma_s$ - Bs lifetime difference

• The mass difference Δm_S and lifetime difference $\Delta \Gamma_S$ of the two CP eigenstates are linked by

$$\Delta\Gamma_{\rm s}/\Delta m_{\rm s} = -3\pi/2 \cdot m_{\rm b}^2/m_{\rm t}^2 \cdot \eta(\Delta\Gamma_{\rm s})/\eta(\Delta m_{\rm s})$$

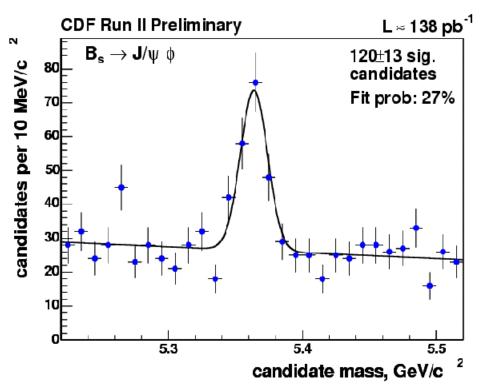

- The QCD factor doesn't depend on CKM
- Δ ms and $\Delta\Gamma$ s measurements are complementary
- $\Delta\Gamma_s$ could be large enough to be detectable ($\Delta\Gamma_s/\Gamma_s\sim15\%$)


$\Delta\Gamma_s/\Gamma_s$ Measurements

Three methods suggested for extracting $\Delta\Gamma_s/\Gamma_s$

- Fitting well-defined decay with two lifetimes
 - Fit $e^{-\Gamma_L t} + e^{-\Gamma_H t}$ for Bs \rightarrow Ds 1 v or Bs \rightarrow Ds⁺ π
- Separate CP-even/odd states by transversity analysis
 - − Bs \rightarrow J/ Ψ ϕ is the familiar channel to CDF/D0
- Branching ratio from a pure CP state decay
 - Bs→Ds+Ds- a pure CP-even and triggered by CDF SVT trigger
 - Br(Bs \rightarrow Ds+Ds-) = $\Delta\Gamma_s/[\Gamma_s(1+\Delta\Gamma_s/2\Gamma_s)]$
 - Need to separate Bs→Ds $^{+(*)}$ Ds $^{-(*)}$ with fine mass resolution

$\Delta\Gamma_s/\Gamma_s$ from Bs semileptonic decays


Plenty statistics from semileptonic decays

Suffer from poor lifetime resolution due to partial reconstruction

Useful for limits $\Delta\Gamma_s/\Gamma_s<0.83$ @95% CL from 600 Run-I signals

Δms>5.8 ps⁻¹@ 95%CL from 700 SLT-tagged Run-I signals

$\Delta\Gamma_s/\Gamma_s$ from Bs $\rightarrow J/\Psi\phi$

CP states follow distributions:

$$3/8 \cdot (1 + \cos^2 \Theta_T) \rightarrow \text{CP-even}$$

$$3/4 \cdot (1-\cos^2\Theta_T) \rightarrow CP-odd$$

 $\Theta_{\rm T}$ =Transversity angle

Run-I with 58 events gives $\Gamma^{\text{CP-even}}/\Gamma = 0.778 \pm 0.090 \pm 0.012$

- •With 4K event \Rightarrow an error of 0.05 if $\Delta\Gamma_s/\Gamma_s=15\%$ (Run II B workshop)
- •CDF result with 300 events from 220pb⁻¹ is coming

Summary

- A lot of progress on flavor tagging from CDF/D0
- We are collecting Bs \rightarrow Ds $^{-}\pi^{+}$ at 1600 event/fb $^{-1}$
- With 500 pb⁻¹ data, Bs mixing measurement reaches the Standard Model preferred region (Δm_s =15ps⁻¹)
- With 2fb⁻¹ data, Bs mixing measurement will go beyond the preferred region (Δ ms>18ps⁻¹)
- Precise $\Delta\Gamma_s$ / Γ_s measurements are also underway

Backup slides

CDF/D0 Detectors

Both detectors have very nice silicon device (lifetime), central tracking (mass) , calorimeter & muon system (e/ μ ID) and high bandwidth trigger/DAQ system

CDF

Silicon vertex trigger (SVT)

trigger displaced track and e/µ

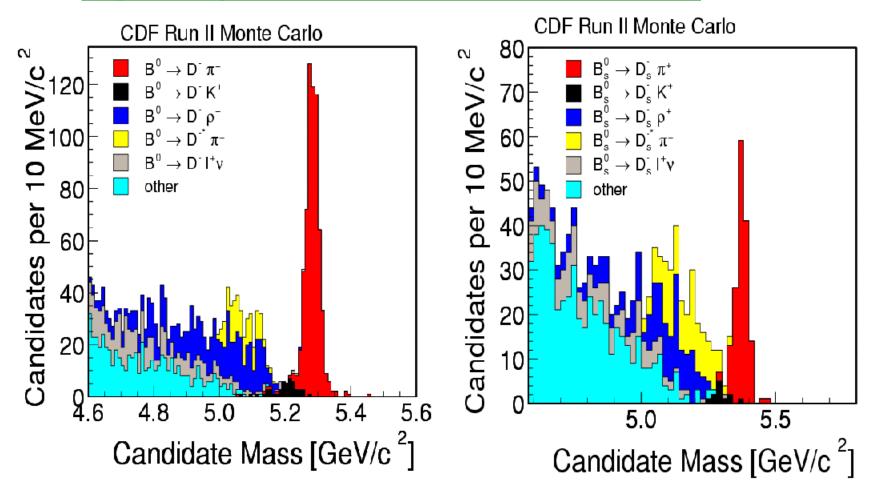
TOF for particle ID

 2σ K- π separation at 1.5 GeV

Excellent mass resolution

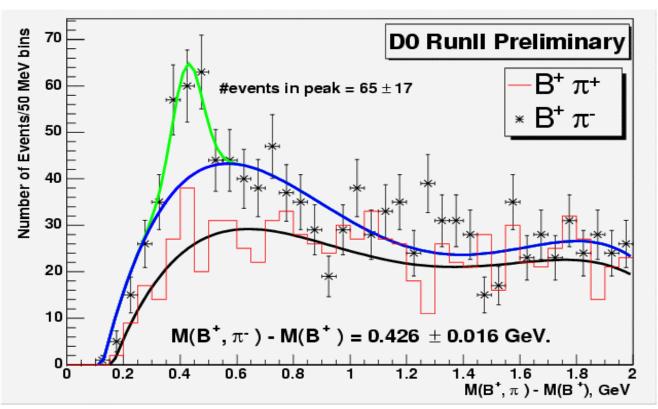
DØ

Excellent muon coverage


trigger μ for pT>1.5 and $|\eta|$ <2.0

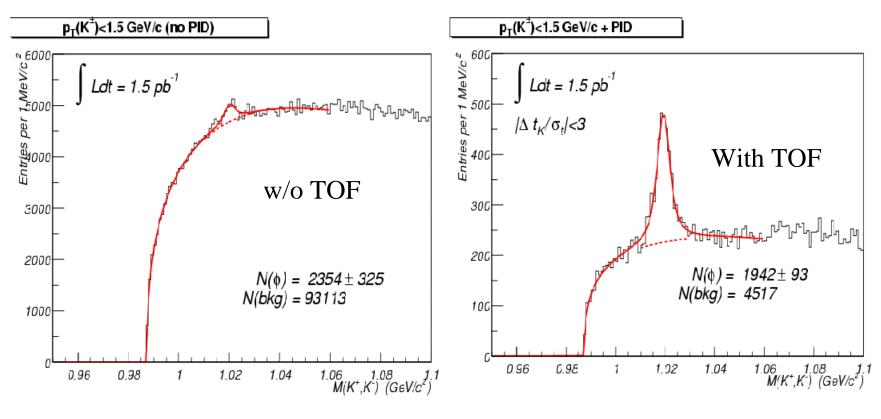
Excellent tracking acceptance

SMT+SFT covers $|\eta|$ <1.6


Silicon track trigger is coming

Separating Bs \rightarrow Ds π from other B reflections

Mass resolution is crucial in achieving decent S/B


New B** result from D0

- D0 uses fully reconstructed B+
 - − 65±17 out of 1193 B could be due from $B^{**0} \rightarrow B^{+}\pi^{-}$
- CDF Run-I used B semileptonic decays
 - Fraction of B from $B^{**} = 0.28 \pm 0.06 \pm 0.03$

TOF performance

 TOF is working and we are working on to improve its reconstruction efficiency

 $\phi \rightarrow K K decays$

$\Delta\Gamma_s/\Gamma_s$ from Bs \rightarrow Ds+Ds-

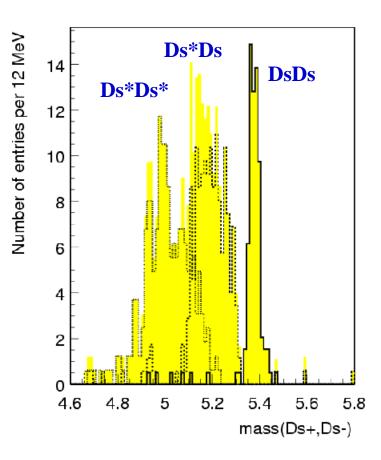
•Br(Bs \rightarrow Ds+Ds-) = $\Delta\Gamma$ s/[Γ s(1+ $\Delta\Gamma$ s/2 Γ s)]

Theory uncertainty could be large

•Separates background of Ds* \rightarrow Ds γ using fine mass resolution

Also introduce 3% error on proper time

32
$$\pm$$
17 Bs \rightarrow Ds $^{+(*)}$ Ds $^{-(*)}$ \rightarrow ϕ


 $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}=0.25 + 0.21 - 0.14$ (ALEPH)

Channel is trigged with SVT of CDF

Br (Bs
$$\rightarrow$$
Ds+Ds-)/Br(Bs \rightarrow Ds+ π -) \approx 2

Reconstruction efficiency will be lower

GEANT for CDF

(Run II B workshop)

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.